Deficiency of complement defense protein CD59 may contribute to neurodegeneration in Alzheimer's disease.
نویسندگان
چکیده
Complement defense 59 (CD59) is a cell surface glycophosphoinositol (GPI)-anchored protein that prevents complement membrane attack complex (MAC) assembly. Here, we present evidence from ELISA assays that CD59 protein levels are significantly decreased in the frontal cortex and hippocampus of Alzheimer's disease (AD) compared with nondemented elderly (ND) patients, whereas complement component 9, a final component to form MAC, is significantly increased. To further confirm the CD59 deficit, PI-specific phospholipase C (PIPLC) was used to cleave the CD59 GPI anchor at the cell surface in intact slices from AD and ND cortex. CD59 released by PIPLC cleavage was significantly reduced in AD compared with ND samples. By the use of a ribonuclease protection technique, amyloid beta-peptide was found to downregulate CD59 expression at the mRNA level, suggesting a partial explanation of CD59 deficits in the AD brain. To evaluate the pathophysiological significance of CD59 alterations in neurons, we exposed cultured NT2 cells, which normally underexpress CD59, and NT2 cells transfected to overexpress CD59 to homologous human serum. Lactic acid dehydrogenase assays revealed significant complement-induced cell lysis in CD59-underexpressing NT2 cells and significant protection from such lysis in CD59-overexpressing NT2 cells. Moreover, cells expressing normal levels of CD59 showed no evidence of MAC assembly or damage after exposure to homologous serum, whereas pretreatment of these cells with a CD59-neutralizing antibody resulted in MAC assembly at the cell surface and morphological damage. Taken together, these data suggest that CD59 deficits may play a role in the neuritic losses characteristic of AD.
منابع مشابه
Gangliosides play pivotal roles in the regulation of complement systems and in the maintenance of integrity in nerve tissues.
Gangliosides are considered to be essential in the maintenance and repair of nervous tissues; however, the mechanisms for neurodegeneration caused by ganglioside defects are unknown. We examined gene expression profiles in double knockout (DKO) mice of GM2/GD2 synthase and GD3 synthase genes and showed that the majority of complement genes and their receptors were up-regulated in cerebellum in ...
متن کاملA Flowcytometry Study of CD55 and CD59 Expression on Erythrocytes in Rheumatoid Arthritis Patients
Background: Inappropriate activation or blockage of the inhibition of complement system could cause tissue damages in autoimmune diseases particularly rheumatoid arthritis (RA). Defect in complement component regulation may cause damages to tissues, on the other hand, or the damaged tissue might affect the unnecessary activation of complement components. Objective: To investigate the expressi...
متن کاملP 97: Neurodegeneration Induced by Tau protein
Tau is one of several types of microtubule-associated proteins (MAPs), responsible for the assembly and stability of microtubule networks that is present only in neurons and predominantly localized in axons which its functions are tightly regulated by phosphorylation. Via as yet unknown mechanisms, tau becomes hyperphosphorylated and accompanies with neuronal degeneration, loss of synapses...
متن کاملAlterations in adult hippocampal neurogenesis, aberrant protein s-nitrosylation, and associated spatial memory loss in streptozotocin-induced diabetes mellitus type 2 mice
Objective(s): Epidemiological and biochemical studies conducted over the past two decades have established a strong link between type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD). However, the exact mechanisms through which aberrations in insulin signaling associated with T2DM contribute to cognitive decline are not yet known. Materials and Methods: In an effort to explore possible m...
متن کاملPericyte loss influences Alzheimer-like neurodegeneration in mice
Pericytes are cells in the blood-brain barrier that degenerate in Alzheimer's disease (AD), a neurological disorder associated with neurovascular dysfunction, abnormal elevation of amyloid β-peptide (Aβ), tau pathology and neuronal loss. Whether pericyte degeneration can influence AD-like neurodegeneration and contribute to disease pathogenesis remains, however, unknown. Here we show that in mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 20 شماره
صفحات -
تاریخ انتشار 2000